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" I T E R  TO THE EDITOR 

Critical dynamics of the alternating bond kinetic king model 

Y Achiamt and B W Southern 
Depanment of Physics, University of Manitoba and Wlnnipeg Instilule for 'Ileoretical 
Physics, Winnipeg, Manitoba, Canada R3T 2N2 

Received 1s April 1992 

Ab~tract. The crilical dynamics of the allernaling bond kinelic k ing  model on a chain 
is examined. I1 is shown that previous n o n - u n i v c ~ l  results for the dynamical rrilical 
aponenl  z for single spin Rip dynamics should be reinterpreled. The rrilical slowing 
down is due to WO distinct mnlribulions which. when separated. indicate lha l  the value 
of z is universal. The exponent remains universal even when WO spin flip dynamics are 
considered 

There has recently been a great deal of interest in violations of standard dynamic 
scaling theory [l] in the relaxational dynamics of king spin models of systems which 
have a critical point at zero temperature. These systems include critical percolation 
clusters [Z], regular fractals [3, 41 and inhomogeneous chains [5, 61. The simplest 
dynamics for the king model is that proposed by Glauber [7] in which transitions 
between states occur due to the flipping of single spins. Glauber solved this model 
exactly for the case of a homogeneous chain of king spins interacting with nearest 
neighbour interactions and it is one of the few exactly solvable kinetic models. Both 
the time-dependent magnetization and pair correlation function can he obtained and 
the model exhibits non-trivial critical slowing down near T, = 0. The conventional 

axrelation length < as follows 
&ing rl_escrihes the rl_epd_ence. of !he r&Xa!ion time r on the rl_iyqe!g 

T - '$2 (1) 

where z is the dynamical critical exponent. The Glauber model predicts the value 
z = 2. Generalizations of this model have been used to study systems with a con- 
served order parameter IS] and various universality classes for z have been identified 
using the renormalization group [9] in dimension d = 4 - E .  

The master equation of the kinetic king model is 

where P ( { S ) , t )  is the time-dependent spin probability distribution, p ;  is the spin flip 
operator, r-' is a hare time scale for an isolated spin and Wi(S;) is the probability 
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transition rate of the ith spin from a state Si to a state -Si .  The transition probability 
rate satisfies the detailed balance relation 

(1 - Pi)Wi(’%)K({SI) (3) 

where P e ( { S ) )  is the equilibrium distribution. This condition ensures the ergodicity 
of the system but does not uniquely determine the form of Wi(Si). Several authors 
[lO-121 have studied the question of whether the exponent z depends on the choice 
of the single spin probability Wi.  In particular, Deker and Haake [lo] show that for a 
special choice of W, the value of z for the homogeneous chain can be changed from 
two to four. However, for this special case there are an infinite number of states 1131 
which are stable against single spin flips. They also conclude that the consideration 
of multiple-spin flip rates is not necessary to find z. 

Droz et a1 [SI reported that for a given choice of the single spin rate, the exponent 
z is non-universal in a system with inhomogeneous couplings. They found that the 
alternating bond Glauber-king model does not belong to the universality class of 
the uniform chain with the dynamic exponent t = 2 but has a non-universal value 
-7 = 1 + (J2/J1)  2 2, where J, and Jz are the alternating bond strengths with 
J2 2 Jl. As described below, a more detailed study of the dynamics of this model 
shows that this asymptotic behaviour is a result of WO different contributions. One is 
due to long ranged fluctuations near the critical point and the other is due to short 
ranged phenomena. 

The one spin Rip model is a straightforward generalization of Glauber’s choice of 
the single spin flip rate Wi to this system [S, 61 

w; = f [ I  - u + s i - , s i  - az-sis. I t 1  ] 

r z f  = $ [ t a n h ( J i  + Ji+l) rt tanh(Ji - Ji+,,] 

(4) 

where 

(5) 

with J,; = J, , Jzitl = J? and J 2  > J , .  The average value of each spin is given by 
the solution of 

where the average ( ) is taken with respect to P({S),2). A Fourier and Laplace 
analysis of (6) with respect to momentum k and the frequency w respectively leads 
to the following dispersion relation 

w / r =  l +  [ t a n h z ( J 2 + J l ) + ( t a n h 2 ( J 2 - J , ) - t a ~ ~ l ~ 2 ( J ~ +  J1))s in2k] l” .  (7) 

This dispersion relation describes two bands of characteristic frequencies. In the 
limit of low T the width of both bands is proportional to e - 2 ( J 2 - J 1 ) .  Each mode 
in the lower band corresponds to a single spin flip metastable state with a relaxation 
time that diverges at T = 0. However, this divergence has nothing to do with 
critical phenomena and is present in any chain with inhomogeneous couplings. In the 
alternating chain, there are strong bonds(J,) and weak bonds(J,). The spins that 
are coupled by strong bonds form blocks which have their spins aligned. At IOW T ,  
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the lowest energy excitations correspond to these blocks flipping as a unit because in 
this case only the weak bonds connecting the blocks are broken. If the characteristic 
frequencies are measured in units of the band width, then the internal structure of 
the dispersion relation is the same as in the homogeneous chain. 

In the limit of small IC, the slow mode behaves as 

wc - re-2(J>-J1) ( E - ' +  k') !i 
where the correlation length [ = e2'1 only depends on the weakest bond. This can 
be rewritten in the form 

WII - re-2(Jz-Ji)kz(l + ( I C E ) - ' )  

for k( - CO and as 

Wll l  - r e - 2 ( J r J L ) [ - z ( 1  + (1.02) 

for IC( + 0. Tb identify z from these asymptotic expressions they should be compared 
to the functional form of the characteristic time scale, w , ( k )  G T;' = k Z n ( k ( )  as 
predicted by the dynamic scaling hypothesis [I] 

region I1 : k[  >> 1, T sz T, 

region 111 : IC[ << 1, T - T, > 0 

w , ( k )  = k z O ( k [ ) ,  0(k() -consfant 

U,( k) = E-' f (  k[), f( IC[) + constant. 
(8) 

The comparison shows that the model has two time scales. The first one is 
the bare time scale T~ - r-1e2(J2-J1), which is due to short ranged effects and 
characterizes the width of the two bands of the spectrum. The second time scale, - {' is due to the long ranged fluctuations. This time scale is responsible for the 
detailed structure of the dispersion relation. Therefore, when the bare time scale 
due to short ranged effects is separated from the time scale due to long ranged 
fluctuations, the dynamic exponent z is clearly identified and has the same value 
as in the homogeneous chain. The same conclusion can he reached using exact 
renormalization group transformations and these results will be reported separately 

Any inhomogeneous Ising chain has an exponentially large number of states at 
zero temperature [U] which are metastable against single spin flips. Hence the 
important excitations in the model do not correspond to single spin flips. There are 
an infinite number of divergent relaxation times in the single spin flip dynamics with 
each one corresponding to a metastable state. 

An alternative approach to describe the dynamics of the one-dimensional chain 
could include a mechanism for the metastable states to relax to equilibrium. in 
the case of the alternating bond chain, such a mechanism would correspond to the 
simultaneous flip of the two spins coupled by a strong bond. The dynamic scaling 
hypothesis [l] predicts that kinetic models which arc diffcrent only on a short range 
SCalC S"UU1U oclurlg LU LIIG >alllc "III"Gl>d,lLJ Ud>3 'U," III;IILc. w c  W""I" bnpru ua, 
z = 2. In order to allow the metastable states to relax, the following transition rate 
probability can be added 

~ 4 1 .  

^^^I^ .<...,> L . I . _ .  ~- .L̂  :_.^-^^,:... ,̂,,".. ,,"A L""^n ..,- ..,...., A n""_^. .L..* 
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’Ilk transition rate allows the two aligned spins which form a block to flip together. 
It satisfies the detailed balance condition, (1 - p2j,2j+l)@j(S2jS2jtl)Pe({S)) = 0 
where p2j,2j+l is a two-spin flip operator. The master equation becomes 

The average value of the spin is now determined by 

d 
4%) dd = -2[(s iWi(s;))  + (sizj(s2;s2jtl))] (11) 

where j = integer( i /2)  labels the blocks. The time-dependent magnetization of the 
j t h  block, mj  E:::: qi, obeys the kinetic equation 

- d 
d t  J 
--m.=-r[qz.-a+ I I qzj-I-a;q2j+i +‘~? j+i  -ai+q?j - a z ~ ? j + ? l  

-1 Z (  r‘ (Szj+%j+i)[l  -;(S?; + S?j+1)(S2j-1+S2j+2) tanh(ZJ , ) ] ) .  

(12) 

The average in (lo) involves the term 

1 
T((Szj + ~ 2 j t l ) ~ ( ~ ? j - 1 +  s,j+2)) = 2C‘ ( s ? j - l +  s ~ ~ + ~ ) P ( { s I , < )  

I S Z J S 2 j + l  )=t1 

(13) 

where E‘ is the trace over spins that are not in the j t h  block. This term can be 
rewritten as 

((sZj-1 +s,j+z)) -E’ ( s ? j - I +  s z j + Z ) ~ ( { s ~ > t ) .  (14) 
(S2jS2,+* )=-I  

The relative magnitude of the two terms in (12), in the linear response regime, can 
be evaluated using P e ( { S ] )  instead of P { S } , t ) .  By using standard transfer matrix 
methods we obtain 

Thus, the last term of (12) can be neglected, and (11) becomes % q?,-, + qZjt? The 
total magnetization M ( t )  relaxes according to 

d --M(t) = - M ( t )  [r{i - ( a l  + a , ) ]  + r’{i - t a n h ( 2 ~ ~ ) ) )  
d t  

= - M ( t )  [r{l- tanh(J2 + J1)} + r’(1 - t a n h ( 2 J l ) ] .  (16) 
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n o  time scales now characterize the relaxation of the magnetization. The leading 
time scale is 

T‘ - [l - tanh(2Jl)]-’  - c 2 .  (17) 

The inclusion of the multiple spin flips introduces a relaxation mechanism for the 
single spin flip metastable states and this mechanism dominates the relaxation to 
equiiibrium near 7;. iience the criticai siowing down has the same asymptotic singu- 
larity as in the uniform Ising chain. 

The probability transition rate in (7) is not symmetrical in the sense that only the 
blocks composed of strongly interacting spins are allowed to Rip. We should also add 
the transition mte 

Wi(S2i-l%) = ir”(l+ S2,-,5’2i) [1 - $S2i-l(S?,-2 + S2,+,)tanh(2J2)] (18) 

which contributes to (14) a term r”{l - t a n h ( 2 J z ) ] .  This term is smaller than the 
other two terms and thus can be neglected. 

The results obtained here can be generalized to other inhomogeneous chains. One 
case is a translational invariant chain with a unit cell composed of many different 
i!l.n.rcrac.n.rions. 
are metastable against single spin flips. If one allows the blocks of spins which are 
between the weakest bonds to flip together, the conventional result for z is also found. 
Another case is the completely random chain where the weak bonds are distributed 
in an irregular way. If we allow multi-spin flips, then the dynamics as well as the 
statics are controlled only by the weakest bonds and the conventional dynamics is 
recovered. 

This work was supported by the Natural Sciences and Engineering Research Council 
of Canada. 
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m.1 system a!no has an expnnentia!!y !arge number of states which 
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