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Critical dynamics of the alternating bond Kinetic Ising model
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Abstract. The critical dynamics of the aliernating bond kinetic Ising model on a chain
is examined. It is shown that previous non-universal results for the dynamical critical
exponent z for single spin flip dynamics should be reinterpreted. The critical slowing
down is due 10 two distinct contributions which, when separated, indicate that the value
of z is universal. The exponent remains universal even when two spin flip dynamics are
considered.

There has recently been a great deal of interest in violations of standard dynamic
scaling theory [1] in the relaxational dynamics of Ising spin models of systems which
have a critical point at zero temperature, These systems include critical percolation
clusters [2], regular fractals [3, 4] and inhomogencous chains [5, 6]. The simplest
dynamics for the Ising model is that proposed by Glauber [7] in which transitions
between states occur due to the flipping of single spins. Glauber solved this model
exactly for the case of a homogeneous chain of Ising spins interacting with nearest
neighbour interactions and it is one of the few exactly solvable kinetic models. Both
the time-dependent magnetization and pair correlation function can be obtained and
the model exhibits non-trivial critical slowing down near 7, = 0. The conventional
Qcalmo rhenrv describes the denenden(‘e of the relaxation time T on the dnueropnr

correlanon Iength £ as follows
T~ 1)

where z is the dynamical critical exponent. The Glauber model predicts the value
z = 2. Generalizations of this model have been used to study systems with a con-
served order parameter [8] and various universality classes for z have been identified
using the renormalization group [9] in dimension d = 4 — e.

The master equation of the kinetic Ising model is

a7 PUS)HO = =T 500 = WS PS) @

where P({S},t) is the time-dependent spin probability distribution, p; is the spin flip
operator, ['! is a bare time scale for an isolated spin and W;(.S;) is the probability
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transition rate of the <th spin from a state S; to a state —S;. The transition probability
rate satisfies the detailed balance relation

(l_pi)Wi(S{)Pe({S}) (3)

where P,({S}) is the equilibrium distribution. This condition ensures the ergodicity
of the system but does not uniquely determine the form of W,{S;). Several authors
{10-12] have studied the question of whether the exponent z depends on the choice
of the single spin probability W,. In particular, Deker and Haake [10] show that for a
special choice of W, the value of z for the homogencous chain can be changed from
two to four. However, for this special case there are an infinite number of states [13]
which are stable against single spin flips. They also conclude that the consideration
of multiple-spin flip rates is not necessary to find =.

Droz er al [5] reported that for a given choice of the single spin rate, the exponent
z is non-universal in & System with inhomogeneous couplings. They found that the
alternating bond Glauber-Ising model does not belong to the universality class of
the uniform chain with the dynamic exponent » = 2 but has a non-universal vailue
z =1+ (JofJ)) 2 2, where J, and J, are the ailternating bond strengths with
Jy, 2 J;. As described below, a more detailed study of the dynamics of this model
shows that this asymptotic behaviour is a result of two different contributions. One is
due to long ranged fuctuations near the critical point and the other is due to short
ranged phenomena.

The one spin flip model is a straightforward generalization of Glauber’s choice of
the single spin flip rate W, to this system {5, 6]

Wi=3[1~afS 5 - “;Si‘gﬂ-l] @
where
af = & [tanh(J; + Jiyp) & tanh(J; = J;y,)] )

with J,; = J, , Jy; .y = Jy and J, > J|. The average value of each spin is given by
the solution of

d d

where the average { ) is taken with respect to P({S},%). A Fourier and Laplace
analysis of (6) with respect to momentum % and the frequency w respectively leads
to the following dispersion relation

W/T = 1 [tanh?(J, + J,) + (tanh®(J, — J, ) = tanh?(J, + 4;))sin?&] 77 (7)

This dispersion relation describes two bands of characteristic {requencies. In the
limit of low T the width of both bands is proportional to e~%J2=JU_ Each mode
in the lower band corresponds to a single spin [lip metastable state with a relaxation
time that diverges at 7' = 0. However, this divergence has nothing to do with
critical phenomena and is present in any chain with inhomogeneous couplings. In the
alternating chain, there are strong bonds(./,) and weak bonds(J;). The spins that
are coupled by strong bonds form blocks which have their spins aligned. At low T,
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the lowest energy excitations correspond to these blocks flipping as a unit because in
this case only the weak bonds connecting the blocks are broken. If the characteristic
frequencies are measured in units of the band width, then the internal structure of
the dispersion relation is the same as in the homogeneous chain.

In the limit of small %, the slow mode behaves as

o T )

where the correlation length £ = 21 only depends on the weakest bond. This can
be rewritten in the form

wy ~ Te2 2= k2 (1 4 (k€)™Y
for k§ — oo and as
wyyy ~ Ce= a0 =2(1 4 (k€)?)

for k¢ — 0. To identify z from these asymptotic expressions they should be compared
to the functional form of the characteristic time scale, w (k) = 77! = k*Q(kE) as
predicted by the dynamic scaling hypothesis [1]

regionIl: kE » 1, T= T, w (k) = k*Q{kE), Q(kE) — constant
region Il : k<1, T-T,>0 w k) = E7* f(k&), f(k&) — constant.

The comparison shows that the model has two time scales. The first one is
the bare time scale 7, ~ I'"'e?(Vz=71) which is due to short ranged effects and
characterizes the width of the two bands of the spectrum. The second time scale,
~ &2 is due to the long ranged fluctuations. This time scale is responsible for the
detailed structure of the dispersion relation. Therefore, when the bare time scale
due to short ranged effects is separated from the time scale due to long ranged
fluctuations, the dynamic exponent = is clearly identified and has the same value
as in the homogeneous chain. The same conclusion can be reached using exact
renormalization group transformations and these results will be reported separately
[14].

Any inhomogeneous Ising chain has an exponentially large number of states at
zero temperature {15] which are metastable against single spin flips. Hence the
important excitations in the model do not correspond to single spin flips. There are
an infinite number of divergent relaxation times in the single spin flip dynamics with
each one corresponding to a metastable state. '

An alternative approach to describe the dynamics of the one-dimensional chain
could include a mechanism for the metastable states to relax to equilibrium. In
the case of the alternating bond chain, such a mechanism would correspond to the
simultaneous flip of the two spins coupled by a strong bond. The dynamic scaling
hypothesis [1] predicts that kinetic models which arc diffcrent only on a short range
scale should belong to the same universality class and hence we would expect that
z = 2. In order to allow the metastable states to relax, the following transition rate
probability can be added

Wi(szi Sair1) = 3T'(1 + 55 S5:41) (1= 555:(Saicy + Soiga) tanh(2J,)]. )
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This transition rate allows the two aligned spins which form a block to flip together.
It satisfies the d.etai]ed baI'ance: condition, {1 — py; ;41 YW, (Sp; 85,41 P({S}) =0
where p,. ., is a two-spin flip operator. The master equation becomes

LPushy = —[Z(l-pe>Ws(5f)+§(1 1231 ) 515 Sy | PUS), ).

(10)

The average value of the spin is now determined by

F5(0) = =2US W8N + (8.7, (53, S0 an

where j = integer(i/2) labels the blocks. The time-dependent magnetization of the
jth block, m; = 5171 q;, obeys the kinetic equation

T =T {qy; - a-lFQZj—l — a7 Goj 41 + Qujpr = @3 qgj — a;Q2j+2]
_%(F'(S2j+52j+1){1_%(Szj+S'.?j+1)(52j-1+52j+2)tanh(2‘]1)])-
(12)

The average in (10) involves the term

5((S2j + 83541 )*(Sajr + Saj40)) = 2 Z’ Yo Syt Sy PUST Y

(53382541 )=+1
(13)
where 3" is the trace over spins that are not in the jth block. This term can be

Tewritten as

(Spjr + Soje) =5 30 (Syo + Spje) PUSHY). (14)

(§2;82413=-1

The relative magnitude of the two terms in (12), in the linear response regime, can

be evaluated using F,({5}) instead of P{S},t). By using standard transfer matrix
methods we obtain

}:fz(suszmx):—l(s’-’j—l + ng+3)P({5'},t) ~ g2t T3)
2’2(52152j+1):+1(52j—1 + Soj42) P({5} 1)

(15)

Thus, the last term of (12) can be neglected, and (11) becomes = qq;_; + ¢q;,, The
total magnetization M (t) relaxes according to

A M(t) = M) [T{1 = (a, + ay)} + T'{1 — tanh(24,)}]

dt
= —M(t)}[T{1 —tanh(Jy + J})} + T'(1 - tanh(2J,}]. (16)
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Two time scales now characterize the rtelaxation of the magnetization. The leading
time scale is

7'~ [1 ~ tanh(2J)] ! ~ £2. a7n

The inclusion of the multiple spin flips introduces a relaxation mechanism for the
single spin flip metastable states and this mechanism dominates the relaxation to
equilibrium near T,. Hence the criticai siowing down has the same asymptotic singu-
larity as in the uniform Ising chain.

The probability transition rate in (7) is not symmetrical in the sense that only the
blocks composed of strongly interacting spins are allowed to flip. We should also add
the transition rate

Wi(szi-lszi) = %F”(l + Sp_15%) [1 - %Sﬂiul(s'lim'z + Szi+1)ta“h(2J2)] (18)

which contributes to (14) a term ["'{1 -- tanh(2J,)}. This term is smaller than the
other two terms and thus can be neglected.

The results obtained here can be generalized to other inhomogeneous chains. One
case is a translational invariant chain with a unit cell composed of many different
interactions, This system also has an cxpgnenrially large number of states which

el QLLIVIERY, 22212 P21 ) § Ja g b LR L2kl e py DLINLLLD UL atalba vvieldl

are metastable against single spin flips. If one allows the blocks of spins which are
between the weakest bonds to flip together, the conventional result for 2 is also found.
Another case is the completely random chain where the weak bonds are distributed
in an irregular way. If we allow multi-spin flips, then the dynamics as well as the
statics are controlled only by the weakest bonds and the conventional dynamics is
recovered.

This work was supported by the Natural Sciences and Engineering Research Council
of Canada.
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